Mesoscale Interactions in Tropical Cyclone Genesis

نویسندگان

  • J. SIMPSON
  • E. RITCHIE
  • G. J. HOLLAND
چکیده

With the multitude of cloud clusters over tropical oceans, it has been perplexing that so few develop into tropical cyclones. The authors postulate that a major obstacle has been the complexity of scale interactions, particularly those on the mesoscale, which have only recently been observable. While there are well-known climatological requirements, these are by no means sufficient. A major reason for this rarity is the essentially stochastic nature of the mesoscale interactions that precede and contribute to cyclone development. Observations exist for only a few forming cases. In these, the moist convection in the preformation environment is organized into mesoscale convective systems, each of which have associated mesoscale potential vortices in the midlevels. Interactions between these systems may lead to merger, growth to the surface, and development of both the nascent eye and inner rainbands of a tropical cyclone. The process is essentially stochastic, but the degree of stochasticity can be reduced by the continued interaction of the mesoscale systems or by environmental influences. For example a monsoon trough provides a region of reduced deformation radius, which substantially improves the efficiency of mesoscale vortex interactions and the amplitude of the merged vortices. Further, a strong monsoon trough provides a vertical wind shear that enables long-lived midlevel mesoscale vortices that are able to maintain, or even redevelop, the associated convective system. The authors develop this hypothesis by use of a detailed case study of the formation of Tropical Cyclone Oliver observed during TOGA COARE (1993). In this case, two dominant mesoscale vortices interacted with a monsoon trough to separately produce a nascent eye and a major rainband. The eye developed on the edge of the major convective system, and the associated atmospheric warming was provided almost entirely by moist processes in the upper atmosphere, and by a combination of latent heating and adiabatic subsidence in the lower and middle atmosphere. The importance of mesoscale interactions is illustrated further by brief reference to the development of two typhoons in the western North Pacific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WMO/CAS/WWW SIXTH INTERNATIONAL WORKSHOP ON TROPICAL CYCLONES Topic 2.2: Internal influences on Tropical Cyclone formation Rapporteurs:

This report summarizes work completed since ITWC-V that contributes to an improved understanding of the internal influences on tropical cyclone (TC) formation. The report argues the importance of low-level vorticity enhancement during TC genesis due to convergence in convective regions, both on the individual convective element scale and on the system scale. It is argued that large-scale proces...

متن کامل

2 . 2 : Internal influences on Tropical Cyclone formation Rapporteurs : Kevin

This report summarizes work completed since ITWC-V that contributes to an improved understanding of the internal influences on tropical cyclone (TC) formation. The report argues the importance of low-level vorticity enhancement during TC genesis due to convergence in convective regions, both on the individual convective element scale and on the system scale. It is argued that large-scale proces...

متن کامل

Improving our Understanding of Tropical Cyclone Genesis

The primary question to be addressed is to understand the mesoscale and microphysical differences between cloud clusters that do develop into tropical cyclones and those that do not. Because the problem is not just an issue of the differences of structure within the cloud cluster itself, but is also an issue of how the cloud cluster interacts with the surrounding large-scale environment, a two-...

متن کامل

Mesoscale Simulation of Tropical Cyclones in the South Pacific: Climatology and Interannual Variability

The Weather Research and Forecast model at 1/38 resolution is used to simulate the statistics of tropical cyclone (TC) activity in the present climate of the South Pacific. In addition to the large-scale conditions, the model is shown to reproduce a wide range of mesoscale convective systems. Tropical cyclones grow from the most intense of these systems formed along the South Pacific convergenc...

متن کامل

Scale Interactions during the Formation of Typhoon Irving

The development of Typhoon Irving is investigated using a variety of data, including special research aircraft data from the Tropical Cyclone Motion (TCM-92) experiment, objective analyses, satellite data, and traditional surface and sounding data. The development process is treated as a dry-adiabatic vortex dynamics problem, and it is found that environmental and mesoscale dynamics mutually en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997